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The solution of a Poisson equation expressed in finite-difference form on a nonuniform 
multidimensional mesh of gridpoints in an orthogonal coordinate system is discussed. 
The discussion is specifically directed toward problems which require the solution of many 
such equations with the gridpoint distribution and boundary conditions fixed, which implies 
that in comparing different techniques the task of generating required constants may be 
neglected. Extension of the matrix decomposition technique to cover the case of smoothly 
varying grid-intervals is considered when zero-gradient, zero-value, or (under certain 
conditions) periodic boundary conditions are incorporated. This method is compared in 
particular with the widely used Alternating Direction Implicit procedure, and it is con- 
cluded that for sufficiently small meshes, not exceeding about 40 points in any direction, 
it is both faster and more precise than ADI. 

1. INTRODUCTION 

The point has recently been made [IO] that with the increasing use of three-dimen- 
sional numerical models of fluid flows there is a need for fast algorithms for solving 
three-dimensional Poisson equations expressed in finite-difference form; indeed this 
equation and others of the elliptic type are frequently met in other fields also, such as 
astrophysics and plasma physics. Several different methods have been developed, 
including cyclic reduction [8, 161, alternating direction implicit (ADI) [5], as optimised 
by Wachspress [9], multiple grid techniques [14, 151, matrix decomposition [3, 161, 
and generalized marching algorithms [ 171. 

In the type of problem under consideration [I, 6, 12, 131 the basic equations (i.e., 
the Navier-Stokes equations in fluid mechanics) are solved by integration over time, 
and this necessitates solving at least one elliptic equation in each timestep. We there- 
fore assume that we require to solve many such equations with the distribution of 
gridpoints and the boundary conditions being fixed. This enables us to discount the 
task of generating items which are functions of these alone when we compare methods. 
It is also implied that, apart from the first few timesteps, a quite accurate initial guess 
is available for iterative techniques, viz., an extrapolation from the solution for 
previous timesteps. 
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POISSON’S EQUATION ON A NONUNIFORM GRID 409 

In many fluid problems, computer storage can be reduced by use of nonuniformly 
spaced grids [4, 71. This allows gridpoints to be concentrated in regions such as 
boundary layers where large gradients of the variables are expected. If this is not done, 
the range of problems which may be investigated is restricted; e.g., Williams [12] 
examined a physical system which was expected to possess relatively thick boundary 
layers. The methods listed above have all been developed basically in terms of a grid 
which is uniformly spaced, and extension to irregular grids is not trivial. Quon [6] has 
noted that adapting cyclic reduction is relatively complex, and accordingly uses ADI 
instead. Furthermore, Wilhelmson and Erickson [lo] have concluded that in three 
dimensions the use of cyclic reduction alone (for it is possible to apply different 
techniques in different directions if the equation is separable) is never optimal, so we 
will therefore leave it out of consideration. Multiple grid techniques are admitted to 
be complex to implement 1151, and with a good starting guess would seem to have no 
advantage over ADI. In any case the type of nonuniform grid considered by Brandt 
[143, where a square mesh is subdivided into smaller squares in certain regions, is 
different in character from the one we wish to use, where the grid-interval is varied 
smoothly. 

Matrix decomposition makes use of discrete fast Fourier transforms [3]. The 
problem with this is that trigonometric functions are not orthogonal on a nonuniform 
grid (in the sense that the scalar product of two different vectors is not zero; see below 
for further discussion) and nonuniformity also precludes the use of “fast” transforms 
121. The latter point is not crucial for small numbers of gridpoints because the lesser 
complexity of “slow” transform algorithms compensates for the greater number of 
arithmetic operations relative to “fast” transforms. 

We followed Quon and others in selecting AD1 as the easiest method to implement 
as part of a scheme for numerical determination of fluid flows [l], but some dis- 
advantages became apparent. (a) A minimum of eight iterations is necessary to 
provide a pressure field sufficiently accurate to maintain stability in the overall 
integration scheme, and under some circumstances even more. This occurs despite 
correcting for errors in the same manner as that of Williams [12]. (b) For any accep- 
table number of iterations, AD1 leaves a large error compared to noniterative methods, 
and even if the catastrophic effects noted under (a) are avoided, this can lead to 
errors in the conservation of integral properties such as kinetic energy and angular 
momentum. (c) Since an iteration parameter, which may be 1000 times larger than 
the solution we are looking for, is added in and later subtracted out, rather more pre- 
cision is required locally than is necessary overall. 

We therefore decided to implement the matrix decomposition method, and the aim 
of this paper is to discuss the problems that arose. The method here described has the 
following properties. (a) It is considerably faster than ADI for the relatively small 
number of gridpoints made possible by use of a nonuniform mesh. This is enhanced 
by the removal of the requirement of an initial guess. (b) The solution is direct and 
consequently obtained to within computer rounding error. (c) The method may be 
readily adapted to zero-gradient, zero-value, and, under certain circumstances discus- 
sed below, periodic boundary conditions. 

581/35/3-9 
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A linal point is that the solution of the Poisson equation now takes less than a 
quarter of the total time for each timestep. In consequence little seems to be gained by 
using more complex techniques such as marching algorithms, and these have not 
therefore been investigated. 

2. OUTLINE OF METHOD 

The essentials of the procedure will be illustrated by the solution of a two-dimen- 
sional problem in Cartesian coordinates. For definiteness, the nomenclature appro- 
priate to the fluid-mechanical problem will be adopted. Given a source-function S, a 
pressure field 17 is to be obtained, where both fields depend on the two spatial coor- 
dinates x, y. The Poisson equation is then 

and zero-gradient boundary conditions may be employed [12]. 

aL7 0 ax= at x = 0, x = X, 

ariT 0 
v= 

at y = 0, y = Y, 

(1) 

(2) 

where X and Y are the dimensions of the rectangular region of interest. 

FIG. 1. Distribution of gridpoints and definitions of grid-intervals. n , Main grid, xi, i = 0 to 
I;o,auxikuygrid,f,,i=OtoZ+l. 

Gridpoints for the finite-difference formulation are located as illustrated in Fig. 1 
(for the x-coordinate; the y-coordinate is treated analogously). Note that two sets of 
points (main and auxiliary) are interleaved, and the grid-intervals lie to the left of the 
points with the same index, i.e., 8 is the backward difference operator. (See, e.g., [4, 
6, 7, 12, 181 for the advantage of this choice of grid.) I7 and S are defined on the 
auxiliary gridpoints zi , yrc , which are indexed 1 to I and 1 to K, respectively, within 
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the boundaries only. (A more usual convention includes the dummy points, here 
denoted f, , ~$+r , jJ,, and jjK+l within this range of indexing, but this would be in- 
convenient in the following discussion.) 

Using the simple five-point representation of V2, the finite-difference analogs of (1) 
and (2) are as follows. 

1 
___ (K,lk 
6X&,l 

- 4,) + & ULlk - J&k) ... 1 z 
1 

+ 6Yk@k,l Wok,, - a,> + & Wik-1 - a,.> = Sik , 
k 

(3) 

II -n;k; Iilk - flOk = &k ; 

niK+l = nik ; I&, = n,, . 
(4) 

In essence the use of a Fourier transform removes derivatives with respect to the 
coordinate over which the transform is performed. In this example, Eq. (1) is trans- 
formed using the following functions which satisfy conditions (2). 

H, = cos (F) , m = 0 to co, 

Expansion of II and S as series 

II = P,H, ; S = QmK, , (6) 

where the summation convention for repeated indices is assumed, yields the following 
equations for the expansion coefficients P,,, and Qm . 

(7) 

(8) 

. . . ( 
-m”P, f 3) H, = Q,H, . (9 

Multiplication of (9) by H, followed by integration over x gives finally 

--A - n2P, = Q, , 
8Y2 

n=Oto co. 

Thus the dimensionahty has been reduced by one at the expense of multipIying the 
number of equations. While a second transform could be done to solve Eq. (lo), it is 
always faster to solve the one-dimensional finite-difference equations by a form of 
Gaussian elimination adapted to take advantage of the tridiagonality of the matrices 
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[3, 121 so that this stage is standard. The outstanding problem is to find a finite- 
difference analog of (5)-(10) when the gridpoints are nonuniformly distributed. 

The essential property of the functions H, is that they are eigenfunctions of the 
?/ix2 operator. On a uniform mesh, the vectors obtained by using Eq. (5) with the 
relevant values of x are also eigenfunctions of the analogous finite-difference operator. 
However, no analytic formula is available when the gridpoints are nonuniformly 
distributed, and the vectors must be determined numerically. This is discussed in 
Section 3. Here we will assume that the values H,,L;i (where we take subscripts before 
the semicolon to refer to wave-space, and those after to refer to gridpoint space) are 
known, as also are the corresponding eigenvalues h,, , which correspond to the coeffi- 
cients (-1~“) in Eq. (9). 

As previously noted the scalar products HnLiiHnii are not zero for M -i; n, which is a 
necessary requirement for the process (9)-(10). However, it is always possible to find a 
reciprocal set of vectors /I,:~ for which this property is true, viz., 

where a,,,, is the Kronecker delta. This is also dealt with in Section 3. 
We can now list the steps required to solve the problem given by Eqs. (3) and (4). 

(a) The source function is expanded in terms of the vectors, analogous to (6) above. 

whence 

hn;iSi,c = Qm,khn;iHnr;i = Qn:,c (13) 

so that Qnilc are determined. 
(b) The finite-difference analogs of (8) and (9) above are as follows. 

Taking the scalar product of both sides of (15) with each reciprocal vector in turn, and 
making use of (II), yields 

Qn;k = &P,,, + ‘“;;‘G ‘,;’ + pscki; ;yPnck , II = 1 to I (16) 
k ktl k k 

and this set of equations may be solved by standard techniques as previously noted to 
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determine all I’,;, . Note that the case h, = 0, which always arises with the given 
boundary conditions, requires special treatment. 

(c) The pressure field is now obtainable by summation over eigenvectors. 

3. EVALUATION OF NUMERICAL VECTORS 

Since Poisson’s equation is separable each direction of a system of orthogonal 
coordinates may be treated independently. For the modification of Eq. (14) to yield 
(15) we require that the vectors satisfy the following equations. 

These may be made somewhat more general and compact by defining “leftward” and 
“rightward” coefficients so that (18) may be rewritten as 

fUHm:i+, - H,:J + Li[H,,;i-1 - H,,,:il = kJJ,,,:i , (19) 

which is recognizable as a matrix eigenvalue problem 

A-%,, = L%, . (20) 

The matrix A is of order I x I, and tridiagonal with nonzero elements as follows. 

Aii = -Li - Ri , i=2to1--1, 

Aii+l = Ri T i=1toz-I, (21) 
Ai+u = &+I , i==1toz-1. 

The corner elements A,, and AI1 are determined by the boundary conditions. Taking 
zero-gradient as required by the problem of Section 2, we may substitute 

Ho = HI ; HI,, = HI (22) 

into the first and last of Eqs. (19), respectively, to yield 

A,, = -R, ; A,, = -L, . (23) 

There are standard methods for eigenvector problems [1 l] which may be applied 
to the solution of Eq. (20). Observe that A is quasi-symmetric, i.e., all elements are 
real and all products Aii,lAj+,i are positive. This means that a similarity transform 
exists which converts A into a real symmetric tridiagonal matrix B which has the same 
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diagonal elements as A and superdiagonal elements B,i+l = (Aii+lAi+li)l/z. The 
procedure for determining the eigenvalues of B (which are also the eigenvalues of A) 
will be briefly summarized, since there are some points of interest that are peculiar 
to the present problem. 

First a bound on the absolute value of all A,,,& is provided by finding the sum of the 
absolute values of the elements in each row, and taking the largest. In practice it is 
found that no eigenvalue is greater than zero (compare the continuous problem 
X,,, q = -mz) so that the bound obtained is only required to give a lower limit. Further- 
more the values become closer together as zero is approached, so that it is 
advantageous to determine the eigenvalues in ascending order, using each as the lower 
bound on the next. 

Whatever the procedure adopted, the interval defined by the two bounds is bisected 
several times until it is reduced to within a specified tolerance. This is possible because 
a criterion exists (the Sturm sequence property) as to whether the mean of the old 
limits is an upper or lower bound on the selected eigenvalue. If this mean is L’I, the 
criterion requires the evaluation of the determinants of the principal leading minors 
of the matrix B - clE (where E is the unit matrix), which will be denoted di , where 
i x i is the order of the minor. This may be done recursively, using the following 
formulas. 

A, = I, 

A, = B,, - A, (24) 

A, = (Bii - A) dieI - Bfi_,Ai~z , i = 2 to I. 

It may be noted that A,,,/A, is of order %?, where 6x denotes a typical gridlength 
(say XII). For more than 10-I 5 points this leads to problems due to the generation of 
numbers too large or too small for computer representation, unless g is of order 
unity. Thus it may be necessary to multiply all coefficients Li , & by @ and correct 
the eigenvalues afterward by division by the same factor. 

Finally it is necessary to count the number of times that Ai and Ai+, are of the same 
sign (including the “dummy” determinant A,), considering Ai = 0 to have the opposite 
sign to dieI and noting that successive zeros are impossible. The number thus ob- 
tained is identical to the number of eigenvalues greater than /1. 

Once the eigenvalues of A are known, the eigenvectors can be found by the method 
of inverse iteration, the advantages of which are discussed in [I I]. We have 

(A - LE) Z,i1 + 1) == %X0, (25) 

where I is the number of the iteration. The speed of convergence depends on the 
precision of h, . We have found that with X, determined to a tolerance of 1 in 108, 
five iterations are certainly sufficient if the initial guess prescribed by Wilkinson [I I] 
is employed. 

The vectors may of course be multiplied by an arbitrary constant. A suitable nor- 
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malization is found if the following properties of the vectors are considered. Let us 
define a diagonal matrix as follows. 

Dii = 6xi . (26) 

Then by inspection the matrix defined by 

Z=DA (27) 

is symmetric. 
Now, instead of taking the scalar products of two vectors, weight each point by the 

appropriate grid interval, so that in effect an integration is performed. This may be 
written in matrix form. 

Hm;iHn;i8xi = PmTDs’& , (28) 

where the superscript T indicates transposition. Combining (20) and (27) we have 

which further gives 

Similarly, we obtain 

Taking the transpose of both sides of (31) gives 

XTXTX 12 = h c~F’~D~sf? m a12 n&Y 

which, since both E and D are symmetric, may be combined with (30) to give 

(A, - A,) HnTDtim = 0. 

(29) 

(30) 

(31) 

(32) 

(33) 

This means that if m # n, the quantities defined in (28) are zero. (Note that no 
degeneracies occur with the boundary conditions selected.) 

Let us combine all the vectors into a matrix H, of which each column is a vector. 
Then the product HTDH is diagonal with elements defined by 

G mm = &&‘Dxm. (34) 

It is desirable that the vectors are normalized such that all G,, are unity, so that we 
can write 

HTDH = E. (35) 
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If the set of reciprocal vectors used in Section 2 forms the rows of a matrix II, then 
by definition we have 

hH =E. (36) 

Comparison with Eq. (35) thus gives the following equation for the reciprocal vectors. 

h = H=D. (37) 

Finally, it is operationally convenient to use the matrix formulation and rewrite the 
transformations (13) and (17) as follows. 

Q = bS; II=HP. (38) 

Each column of the matrices Q, S, II, P is associated with a given k value, and the 
rows indicate i or m as appropriate. 

4. TREATMENT OF SYMMETRIC MESHES 

If the mesh has been chosen such that the distribution shown in Fig. 1 has a line of 
symmetry midway between the boundaries (i.e., the right half is a reflection of the 
left) then some modifications to the scheme outlined above are necessary if the bound- 
ary conditions are also symmetric. For definiteness, we will assume that the number 
of points lis even so that the mirror line falls between points; the alternative case with 
the mirror line passing through the central gridpoint is only slightly more complicated. 
It is found that the most negative eigenvalues fall into pairs which are pathologically 
close. (This is not true degeneracy such as is found under periodic boundary condi- 
tions in the continuous or uniform-mesh problem, when both sine and cosine func- 
tions with the same eigenvalue are required; it occurs even when the boundary 
conditions only allow vectors of either sine or cosine type. Rather it is associated 
with the amplitude of the relevant vectors becoming very small where the grid inter- 
vals become largest, and this will normally be in the region of the mirror line in fluid- 
mechanical problems because gridpoints are concentrated near the boundaries. This 
means that the effect of the different boundary conditions (39), now about to be 
discussed, is hardly felt.) 

When eigenvalues are very close, there are difficulties in separating the cor- 
responding vectors [I I]. However, the problem may be circumvented by realizing 
that the two vectors have different symmetry properties. All vectors must be either 
symmetric or antisymmetric about the mirror line, so that 

where the sign depends on m: the vectors are split into two sets which we will call 
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“even” (positive sign) and “odd” (negative sign). Each set has Z/2 members, which are 
all orthogonal to members of the other set. This means that each set may be treated 
independently, solving two equations of type (20) in which the matrices are only of 
order Z/2 x Z/2. These matrices are both constructed from the first half of the set of 
operators using (21), but the second of the conditions (22) is replaced by the new 
conditions (39), one in each matrix. Only half of the components of the required 
vectors are obtained, and the other half is known to be either symmetric (even) or 
antisymmetric (odd). This means that the storage required for the vectors is reduced 
from Z2 elements to Z2/2 elements. The same applies to the storage of the reciprocal 
vectors; it is sufficient to find the inverse matrices to the two Z/2 x Z/2 matrices 
containing the half-vectors, and then multiplying the reciprocal vectors by 0.5 to 
allow for the fact that the true eigenvectors have twice as many elements. 

There is a further computational advantage in using symmetric meshes. The number 
of operations in transforms (38) is reduced by a factor of nearly 2. For example the 
matrix S (of order Z x K) is converted into a pair of matrices of order Z/2 x K, one 
of which is then used in association with the even vectors and the other with the odd 
vectors. The conversion algorithm is as follows. 

ESi,k = &A + SI,,-,,I, 2 

OSi& = &,k - SI,,-,,l, f 
(40) 

The two sets of equations (16) are solved independently. (The singular case h = 0 is 
found to be the last of the even equations, if the ordering of eigenvalues suggested in 
Section 3 is adhered to.) After even and odd pressure fields are obtained using (38), 
the final solution is obtained as follows. 

(41) 

5. EXTENSIONS FOR OTHER BOUNDARY CONDITIONS 

This section will be concerned with the selection of the matrix A of Eq. (20). The 
determining factors are (a) the position of the boundary with respect to the gridpoints; 
(b) the boundary conditions; (c) whether the grid is symmetric; and if so, (d) the 
position of the mirror line with respect to the gridpoints. A Cartesian coordinate 
system will be assumed throughout this section. 

In the absence of symmetry, use of periodicity as a boundary condition means that 
the matrix can be generated entirely using an appropriate modification of formulas 
(21) but is cyclic rather than purely tridiagonal. Therefore methods of solution other 
than those discussed in Section 3 are required, and this problem has not been in- 
vestigated. This leaves eight cases, according as the boundary condition is zero- 
gradient or zero-value: is applied at the left or the right, and whether the boundary is 
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TABLE I 

Selection of Basic Boundary Conditions on an Asymmetric Mesh 

Position Formulation of boundary conditions Formulas for corner elements 
of Boundary 

boundary conditions Left Right Upper left Lower right 

Between Zero-value Ho + HI = 0 HI + HI-, = 0 -R, - 2L, -LI - 2RI 

points Zero-gradient Ho = HI HI = HI-, --RI -h 

Through Zero-value Ho = 0 HI = 0 -RI - L, -Lr - RI 

points Zero-gradient HI = Hml HI = HI,, -R,, - Lo” -RI+, - LItI* 

o Modify A,, to R. + L,, , instead of using (21). 
’ Modify AI+U+I to RI+~ + r,+, , instead of using (21). 

positioned as shown in Fig. 1 or passes instead through a gridpoint, which will be 
taken as i = 0 or i = I + 1 as appropriate. This choice retains the indexing 1 to I for 
elements of A when zero-value boundary points are required, but under zero-gradient 
conditions the matrix is of order (I + 2) x (I + 2), with the elements corresponding 
to all gridpoints i = 0 to i = I + I; leftward and rightward coefficients must there- 
fore be defined in this range, which necessitates the use of dummy points outside the 

n I m 

%2+2 
/O 

if 
I 
I 
I 
\ 
\ 

XI-2 = 

%-I 
q 

m 
X:.; 

$2 ., 
0 

\ 

mirror line 

FIG. 2. Schematic representation of a symmetric periodic mesh. 
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boundaries indexed i = -1 and i = I + 2. The formulas for the corner elements of 
A are listed in Table I. (This includes formulas (22) and (23).) 

If the mesh and the boundary conditions are symmetric, than the left boundary 
condition is retained, but two pseudo-boundary conditions are chosen on the right as 
discussed in Section 4. These will be one zero-gradient and one zero-value, and may be 
selected from Table I according to the position of the mirror line, which acts as a 
pseudo-boundary. 

A further case to be considered is when periodicity is a boundary condition and the 
gridpoints are symmetrically distributed as illustrated in Fig. 2. The vectors must be 
symmetric or antisymmetric with respect to the mirror line, so that half-vectors may 
be determined as discussed in Section 4 by use of the following pseudo-boundary 
conditions. 

Even 

Odd 

HI = H, (- Ho) 

-HI = HI (= Ho) 

and 

and 

HI/~ = Hrie+l > 
(42) 

HIIS = -J{IIW . 

This means that the original cyclic matrix is reduced to two tridiagonal matrices, thus 
avoiding the problems mentioned previously. Obviously this can be done for grid- 
point distributions other than that of Fig. 2 if this is necessary. 

A final point in connection with boundary conditions is that a zero eigenvalue is 
only found with zero-gradient on both boundaries. It arises because the columns of A 
are not linearly independent in these circumstances. 

6. EXTENSIONS TO OTHER PROBLEMS 

(a) The methods outlined above can be readily extended to three or more dimen- 
sions since each is treated independently. In particular it is possible to combine them 
with standard fast Fourier transforms if the mesh is uniform in any direction. No 
problems arise with respect to computer storage because the source function is con- 
tinually overwritten until the pressure field is obtained. Only one-dimensional work 
arrays are required, whose size is determined by the maximal number of gridpoints in 
any direction. A possible difficulty considered in [lo] is the optimization of input- 
output operations where it is not possible to hold the entire source function in main 
core. This is not considered here because in the applications known to the author the 
problem has not arisen. 

(b) There is no fundamental difficulty in using orthogonal coordinate systems 
other than Cartesian, for example cylindrical and spherical polars. However, incor- 
poration of curvature may preclude the use of symmetry even though the gridpoints 
are correctly distributed: the important point is that the leftward and rightward 
coefficients should be symmetric. Furthermore elimination of derivatives with respect 
to angles will leave terms which contain both radius and angular eigenvalues. This 
would mean that a distinct set of radial eigenvectors would be required for each 
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angular eigenfunction, which is evidently a poor use of computer storage. For this 
reason it is in general desirable to leave radius as the last dimension to be treated, and 
solve in this direction by Gaussian elimination in which the variation in angular 
eigenvalue creates no serious degradation of computer use. Finally it will be neces- 
sary to check that the matrix I: of Eq. (27) is symmetric, else Eq. (37) cannot be used 
for determination of the reciprocal vectors; the standard Gauss-Jordan method can 
be used instead. 

(c) More general elliptic equations can be treated by rewriting Eq. (19) after 
defining appropriate “central” coefficients Ci, as follows. 

Wherever this is possible the matrix A can be constructed by obvious modifications to 
(21) and Table I. Also, higher-order finite-difference schemes than the simple three- 
point ones discussed here can be employed, but this would require more general 
methods of eigenvector determination since A would no longer be tridiagonal. 

The following three-dimensional problems have actually been used operationally. 

EXAMPLE 1 [I]. A Poisson equation in cylindrical polar coordinates 

la x7 
-4 1 

1 aeI7 -c 8217 c_ z 
r ar r ___ + yz a@2 &2 ar 

s 
(44) 

is solved with the boundary conditions being zero normal gradients (r and z) and 
azimuthal periodicity (0). The radial and vertical meshes are nonuniform but sym- 
metric, the azimuthal mesh is regular. The finite-difference equations to be solved are 
thus 

where 1 <i<l, 1 <‘k <K, 1 <j,<J. 
The steps in the solution are as follows. 

(a) Expansion of pressure and source function as a sum over azimuthal eigenvectors 
defined by 

Hmti = exp (im e,), -;<W& (46) 

wherej indexes the azimuthal gridpoints. The corresponding eigenvalues are 

2 
A,, = gjTf [cos(m~e) - I J 

(see 1121). 

(47) 
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If we let 

then the only arithmetic operation to be performed is 

Tn,;ia = H-,,;jSijkjJ. 

Eqs. (45) now become 

421 

(48) 

(49) 

where m has the range given in (46). 

(b) Expansion as a sum over vertical eigenvectors. These are generated numerically 
as discussed in Sections 3 and 4 and their components will be denoted Z,:, , where p 
identifies the vector. The eigenvalues are p,, and the set of reciprocal vectors &,Ck . If 
the expansions are 

then the necessary transforms are 

Each of Eqs. (50) now becomes 

(52) 

(53) 

where 1 < p < K. 

(c) The set of simultaneous equations, selected from (53) by having the same m and 
p, is now solved by standard techniques to obtain the Qmpii. The vertical eigenvector 
expansion was preferred to a radial expansion because the operators in (53) are 
asymmetric, and because of the term (hm/?i’) Qwuii . 

(d) The summations given in (51) and (48) are now performed to obtain all ndjlc 
from the QmPCi . In practice operations (48) and (49) are not executed as written down 
because fast transform techniques [2] can be substituted. 
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EXAMPLE 2 [13]. Poisson’s equation in Cartesian coordinates is solved with 
horizontal periodicity (both x and y) and zero-gradient boundary conditions vertically 
(z). The horizontal meshes are both symmetrically nonuniform, the vertical mesh is 
also nonuniform but asymmetric. The finite-difference equations to be solved are 

where appropriate assumptions are made with regard to horizontal indexing to 
ensure periodicity. 

The procedure adopted is to make transformations in terms of two sets of numeri- 
cally generated eigenvectors which are functions of either x or y, and leave a set of 
one-dimensional problems in terms of the vertical coordinate. There is in fact no great 
overhead in using two different sets of vectors for the two directions, but if all the 
grid-intervals in one direction are related to those in the other by the same scaling 
factor, i.e., 

for all i (which implies that the numbers of gridpoints in the two directions are the 
same), then the vectors are identical and the eigenvalues are simply related: 

L(x) = MY> c2- (56) 

7. EFFECTIVENESS OF THE METHOD 

The assumption is made that a large number of equations are to be solved on the 
same mesh, as in the time-integration of a fluid-mechanical problem, so that the 
generation of the numerical eigenvectors is a negligible task compared to their use. 
Since the presence of symmetry only enhances the effectiveness, comparisons will be 
done (against ADI) in terms of an asymmetric grid. 

First, each set of vectors, reciprocal vectors and eigenvalues requires the storage of 
(21 + 1) I numbers, where I is the number of gridpoints in the auxiliary mesh, ex- 
cluding dummy points. This compares with perhaps 32 iteration parameters in ADI, 
so it is evident that for large I the latter method is preferable. 

Operation counts for the model problem discussed in Sections 2 and 3 are given in 
Tables II and III. These are obtained by assuming that all necessary coefficients are 
evaluated once from the grid-intervals and stored, but eigenvalues and iteration 
parameters are added in as required rather than multiplying the number of coeffi- 
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TABLE II 

Operation Counts for AD1 

+- Xi 

(a) In two dimensions 

Rectangular mesh, per iteration 
Square mesh, per iteration 
Square mesh, eight iterations 

(b) In three dimensions 

Cuboidal mesh, per iteration 
Cubic mesh, per iteration 
Cubic mesh, eight iterations 

10% + 3(i + k) 12% + 2(i + k) 

10n2 + 6n an* + 4n 
son2 + 48n 96n* + 32n 

2lijk+z’j+jk+ik+3(i+j+k) 24ijk+2(i+j+k) 
21n3 + 3na + 9n 24n8 + 6n 

168nS + 249 + 72n 19W + 48n 

cients to be stored. Moreover any special treatment required at the boundaries is 
neglected. 

It may be seen that, given a minimum of eight ADI iterations, a crossover point 
occurs for an IZ x n mesh when II is about 40. For fewer gridpoints AD1 is not only 
less precise but also slower than the direct solution. 

The tables also give counts for the three-dimensional Cartesian problem with all 
meshes asymmetrically nonuniform. In this case the crossover point for an IZ x )2 x y1 
mesh is at about 45 points. 

The following test was devised for investigation of the Poisson equation solvers, 
being chosen to simulate the problems we are actually faced with in the overall 
numerical integration [l]. A two-dimensional array of gridpoints (cylindrical polar 
coordinates with no azimuthal variation) was defined, with both grids being sym- 
metrically distributed to concentrate points near the boundaries r q = a, b and z = 0, d. 

TABLE III 

Operation Counts for Present Method 

+- Xf 

(a) In two dimensions 

Rectangular mesh 
Square mesh 

(b) In three dimensions 

Cuboidal mesh 
Cubic mesh 

2Pk + 2ik 
2n3 + 2n2 

ijk(2i + 2j + 1) 
4n* + n3 

2Pk + 5ik 

2n3 + 5na 

ijk(2i + 2j + 5) 

4n4 + 5na 
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A pressure field was defined by 

IT = M(r) N(z), 
M(r) = 1 - exp((r - 6)/0.3)) - exp((a - r)/O.3)), 

N(z) = I - exp((z - Q/0.3)) - exp(-z/0.3), 
(57) 

with a = 2, b = 5, and d = 3, and a source function was derived using the finite- 
difference equation (45) with zero-gradient boundary conditions. The Poisson equa- 
tion was then solved for this source function, using the following initial guess for ADI. 

IIg = sin(n(r - cr)/(b - a)) sin(nz/d). (58) 

The accuracy was checked by comparing the gradients X7/&, X7/az of the solution 
against the original, since these are the important quantities in fluid-mechanical 
problems. 

Comparison was made as follows. (a) AD1 with 8, 16, or 32 iterations against the 
present method. (b) Small grid (14 x 14 points within the boundaries) against larger 
grid (30 x 30 points). (c) Single precision (24 bits) against double precision (56 bits) 
arithmetic. In this connection the accuracy of the eigenvalues in the direct solution is 
1 in lo6 and 1 in lOlo, respectively. 

The results are presented in Table IV. For each case three numbers are given, first 
the time required to solve the equation, then the time used to set up eigenvectors or 

TABLE IV 

Comparison of Speed and Accuracy of Poisson-Equation Solvers 

14 x 14 
6.P.) 

AD](I) 

13.44 
(1.77) 

1 o-2 

ADl(16) ADI(32) Direct 
.---~~~ 

26.46 52.49 5.32 
(2.29) (10.00) (16.87) 

10-a 3 x 10-s 5 x 10-e 

14 x 14 
(0.) 

30 x 30 
6.P.) 

30 x 30 
(0.) 

13.22 26.36 52.71 5.31 
(2.08) (2.82) (3.96) (20.52) 

10-Z 2 x 10-a 3 x 10-a 3 x lo--” 

53.65 108.13 215.52 32.61 
(1.67) (2.29) (4.06) (61.04) 

2 x IO-2 6 x 1O--4 3 x 10-3 1 o-5 

54.37 106.88 223.86 32.40 
(2.29) (2.71) (4.37) (75.31) 

2 x 10-Z 3 x 10-h 2 x 10-G 5 x lo-” 

n Precision problems arose in this case during evaluation of iteration parameters, which throws 
some doubt on this calculation. 
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iteration parameters, both times being in milliseconds on an IBM 360/195. The third 
figure indicates the accuracy, obtained by dividing the root mean square error by the 
r.m.s. gradient. It should be noted that in the course of a time-integration it is generally 
possible to generate a much better initial guess than (58), with corresponding im- 
provements in the final answer. Nevertheless for a “one-off” problem such a guess is 
not likely to be available, so that the present method is to be preferred even when the 
evaluation of eigenvectors has to be taken into account. 
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